Switching kinetics of electrochemical metallization memory cells.
نویسندگان
چکیده
The strongly nonlinear switching kinetics of electrochemical metallization memory (ECM) cells are investigated using an advanced 1D simulation model. It is based on the electrochemical growth and dissolution of a Ag or Cu filament within a solid thin film and accounts for nucleation effects, charge transfer, and cation drift. The model predictions are consistent with experimental switching results of a time range of 12 orders of magnitude obtained from silver iodide (AgI) based ECM cells. By analyzing the simulation results the electrochemical processes limiting the switching kinetics are revealed. This study provides new insights into the understanding of the limiting electrochemical processes determining the switching kinetics of ECM cells.
منابع مشابه
Understanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations.
We report on a 2D kinetic Monte Carlo model that describes the resistive switching in electrochemical metallization cells. To simulate the switching process, we consider several different processes on the atomic scale: electron-transfer reactions at the boundaries, ion migration, adsorption/desorption from/to interfaces, surface diffusion and nucleation. These processes result in a growth/disso...
متن کاملAnalytical analysis of the generic SET and RESET characteristics of electrochemical metallization memory cells.
We report on an analytical model which describes the bipolar resistive switching in electrochemical metallization cells. To simulate the resistive switching, we modeled the growth and dissolution of a metallic filament together with electron tunneling between the growing filament and the counter electrode. The model accounts for the controllability of the low resistive state and the RESET curre...
متن کاملNanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems.
A detailed understanding of the resistive switching mechanisms that operate in redox-based resistive random-access memories (ReRAM) is key to controlling these memristive devices and formulating appropriate design rules. Based on distinct fundamental switching mechanisms, two types of ReRAM have emerged: electrochemical metallization memories, in which the mobile species is thought to be metal ...
متن کاملHighly controllable and stable quantized conductance and resistive switching mechanism in single-crystal TiO2 resistive memory on silicon.
TiO2 is being widely explored as an active resistive switching (RS) material for resistive random access memory. We report a detailed analysis of the RS characteristics of single-crystal anatase-TiO2 thin films epitaxially grown on silicon by atomic layer deposition. We demonstrate that although the valence change mechanism is responsible for the observed RS, single-crystal anatase-TiO2 thin fi...
متن کاملAdvanced Cu chemical displacement technique for SiO2-based electrochemical metallization ReRAM application
This study investigates an advanced copper (Cu) chemical displacement technique (CDT) with varying the chemical displacement time for fabricating Cu/SiO2-stacked resistive random-access memory (ReRAM). Compared with other Cu deposition methods, this CDT easily controls the interface of the Cu-insulator, the switching layer thickness, and the immunity of the Cu etching process, assisting the 1-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 18 شماره
صفحات -
تاریخ انتشار 2013